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but next week...
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Stating the observed and obvious

Moving
through
fisheries
spacetime
WCSAM
2013

Rich Hillary,
CSIRO . . .
Wealth from m Fish abundance changes with space and time

Oceans
National

Jesearch m Sometimes a lot (frustrated fishermen around the globe)

Flagship

m Not all fish move in the same way
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What about everything else?

spacetime
WCSAM

2013

m Is abundance the only thing that changes?
Rich Hillary,

CSIRO

Wealth from m Assessment scientists care about and often need:
Oceans

2::;:12!'\ Growth dynamics

st Reproductive dynamics
Stock-recruit relationship
[ Natural mortality

m How and when can these vary in space and time?
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General assumptions we make

spacetime

WESAM m Population being assessed is spatially homogeneous

Rich Hillary, . . .
i m Key parameters are time invariant:

Wealth from
Oceans Growth, natural mortality, maturity

National

Research Stock-recruit relationship
Floeship Catchability (for key abundance series), selectivity

m Some processes non-stationary:

Recruitment
Surplus production
Fishing mortality
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Talk outline

spacetime
WCSAM
2013 . ,
Rich Hilary m Examples of where those assumptions don't apply
CSIRO
Wealth fr
Ocenns m Inter-connectedness: knock-on effects of the changes
National
Research )
Flagship m We can deal with change but does the cause matter?
m If you look, you'll find it & data collection implications
m Is it space and time, or really more like spacetime?
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Growth

Moving
through
fisheries
spacetime
WCSAM
2013

R m All structured models (length/age/stage) need it
Wealth from
Oceans

National m One of dominant determinants of sustainable yields

Research
Flagship

m Temporal growth: Southern bluefin tuna

m Spatial growth: Western Pacific swordfish
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SBT length-at-age over time

s m Years: 1931-2012; Ages: 0-30+

through
fisheries
spacetime
WCSAM SBT length-at-age
2013 —
Rich Hillary, 180
CSIRO
Wealth from
Oceans 160
National
Research NN
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SBT length-at-age over time

spacetime
WCSAM
2013

Generally, SBT now growing faster

Rich Hillary,
CSIRO
Wealth from
Oceans
National
Research
Flagship

Not growing as long (smaller L)

Structural aspect to growth changes

In 1960s growth more von Bertalanffy
m From 1980s definitively more two-stage (slow/fast/slow)

m Cause: density-dependence, selective pressure, both?
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Western Pacific swordfish

Moving
through
fisheries
spacetime
WCSAM . . .
2013 m Genetic evidence that NW and SW Pacific separate stocks

Rich Hillary,
CSIRO
Wealth from

m Even in North there appears to be variation in growth

Oceans
National

Research m Up to 2008 Hawaiian growth curve used in SW Pacific

Flagship
m SW Pacific length-at-age looks lower than Hawaiian

m Until 2013 differences ascribed to ageing methodologies

m SW Pacific tag returns just enough to check...
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Western Pacific swordfish

Australian data
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2013 «
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Rich Hillary, CSIRO Wealth from

Oceans National Research FIg
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Western Pacific swordfish

spacetime
e m SW Pacific tag data not consistent with Hawaiian growth

Rich Hillary,
CSIRO
Wealth from
Oceans

Hawaiian growth rates significantly faster than SW Pacific

National
Research
Flagship

Hawaiian L, also lower

Bias? Both caught in pelagic long-line so...

m SW Pacific and Taiwanese growth more similar

Likely linked to notable variation in local productivity
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Growth isn't just how long you are...

Moving
through
fisheries
spacetime
WCSAM
2013

m Time-varying growth (SBT) we can (and do) deal with

Rich Hillary,
CSIRO
Wealth from

Oceans m Good evidence M and maturity function of age and length

National
Research

Flagship m So in assessment with age-based M and maturity...
m Reality is we probably have M, ; and m, ,

m Making sense of this in terms of key reference points...
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spacetime
WCSAM
2013

Rich Hillary,
CSIRO
Wealth from
Oceans
National
Research
Flagship

“why"” important?

m Returning to SBT growth example:

Selection: removal of slow growing juveniles?
D-D: over-fished (cor(In /T/t,Zt) ~ —0.8)

m D-D: will it change back again - any hysteresis?
m Selection: permanent or transitory? timescales?

m What does either of these mean for defining By or MSY?
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Natural mortality

spacetime
WCSAM
2013

m Like growth, all age/length structured models need it
" Csiro _ .
Wealth from m Unlike growth, very hard to estimate

Oceans
National
Research
Flagship

m Mostly assumed to be time and age/length independent

m Mark-recapture, prey consumption data show age/length
dependence

m Hard to believe it is time-invariant...
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Time-varying M: herring examples

Moving
through
fisheri . .
e m Central Baltic and North Sea herring as example cases
WCSAM . . .
2013 m Baltic model (Mantyniemi et al., 2013, CJFAS):
Rich Hilary Integrated Bayesian state-space model
Wealth from Estimates recruitment, F, ,, M, 5, SSB etc.
cans Annual random effect structure for M
Research B Catch and survey biomass/composition data

Flagship

m North Sea model (Hillary, 2011, CJFAS):
Integrated Bayesian state-space model
Estimates recruitment, 7, ,, SSB etc.

Bayes' factors used to estimate optimal 7J , structure

B Uses survey data only (acoustic, trawl, larval)

B Post hoc estimates of M, , and F, ; from survival

probabilities, catch and abundance
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Central Baltic herring M

Moving = My for age 1 (bottom) and 5 (top)

through
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North Sea herring M

Moving m M, for juveniles (0-1, Fig. a) and adults (2-6, Fig. b)

through

fisheries
spacetime
WCSAM

2013

Rich Hillary, 1.50 — (a) 0.50 — (b)
CSIRO _

Wealth from
Oceans
National _

Research _
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Time-varying M

et m Different but “similar” stocks and qualitative observations:
WCSAM
2013

Rich Hillary, Higher, more variable M, on younger/smaller fish
CSIRO

Wealth from Lower, less variable M, for older/longer fish

Oceans

National Estimated M quite different to assessment

Research

Blagship B Recruitment, survival/F, SSB differ to stock assessment

m Conceptually different models estimate time-varying M

m Commonalities:

“Good" survey biomass/composition data

Rigorous statistical estimation of model flexibility
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Reproductive potential

spacetime
WCSAM
2013 . .
Rich Hilary, m Status of reproductive population key management factor
CSIRO
R m Be it SSB, total egg production key assessment output
National
Research
Flagship m Relative maturity ogive most common approach
m Almost always assumed stationary and spatially isotropic
m Maturity schedule strongly influential of sustainable yields
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South Pacific albacore

spacetime
WCSAM
2013

Rich Hillary, . . . .

SESIROL m Assessment: time/space invariant maturity-at-age
Wealth from

Oceans

National m Recently completed project on albacore biology

Research
Flagship

m One focus spatial patterns in female maturity-at-length

m Does spatial and within-year grouping lead to bias?
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Sample areas

throuns m From Farley et al. (2013, submitted)
fisheries
spacetime
WCSAM
2013

Rich Hillary,
CSIRO
Wealth from
Oceans
National
Research
Flagship

Latitude

C1 ETBF area 1
ETBF area 2
O ETBF area 3

3 4 .
T

¥ t} E © Mature
A Immature

140 160 180 200 220

Longitude
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Model approach

Moving

through

fisheries
spacetime
WCSAM

2018 m Generalised additive models for relative maturity:

Rich Hillary,
CSIRO
Wealth fr m — i1 .
calth from E (p,-’a’s?w) = logit™" (s(FL;) + lat, * seasons + set,,)
National
Research
Flagship

m Use CPUE from ETBF areas as proxy for relative
abundance

m Calculate spatiotemporal maturity-at-length latitudinally
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Spatiotemporal albacore maturity

Moving season 1

through 2% woighiod avorage
fisheries
spacetime g
WCSAM s
2013 5
Rich Hillary, =
CSIRO =
Wealth from o ;;:;;»ligli.ii
Oceans - - - T

National
Research
Flagship

FL em)

Season 2

Proporton mature

95 100
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Spatiotemporal albacore maturity

Moving
through
fisheries
spacetime
WCSAM
2013

Season 1

Rich Hillary,
CSIRO
Wealth from
Oceans
National
Research
Flagship

_ength at 51% matu-ity

Latitude

Season 2

70 75 80 85 90 OF

Le~gth at 0% marurity

61 65

Latitudle
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Stock-recruit relationship

Moving
through
fisheries
spacetime
WCSAM
2013

m Hugely important part of the puzzle

Rich Hillary,
CSIRO
Wealth from

D m With growth, maturity, mortality, selectivity = MSY

National
Research

Flagship m Often defined (Ricker, B-H) via steepness and By (or Rp)
m Yes steepness hard to estimate, but is By always By?

m Sometimes over very long timeframes we assume so...
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Jackass morwong recruitment dynamics

Moving
through
fisheries
spacetime
WCSAM
2013 . . . - .
Rich Hilary, m Fairly long lived demersal species in SE Australia
CSIRO
R m Non-standard larval dynamics ~ 9-12 mth pelagic phase
National
Research
Flagship m Caught since 1915 mid-1980s onwards catch & CPUE |
m For assessment steepness of 0.7 (0.5-0.95 range) assumed
m Declining recruitment seeming cause but declining why...
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Moving
through
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spacetime
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2013

Rich Hillary,
CSIRO
Wealth from
Oceans
National
Research
Flagship

Jackass morwong recruitment dynamics

From Wayte (2013, Fish. Res):

log recruit devn

e

# recruit (000s)

No shift

Recruitment shift

e

T T T T
1920 1940 1960 1980 2000

T T T T T
1920 1940 1960 1980 2000

T T T T
1950 1960 1970 1980 1990 2000

T T T T T
1950 1960 1970 1980 1990 2000

Rich Hillary, CSIRO Wealth from Oceans National Research FI{

T T T T T T
5000 10000 15000 20000 25000 30000
‘spawning biomass

T T T T T T
5000 10000 15000 20000 25000 30000
spawning biomass.
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Jackass morwong recruitment dynamics

spacetime
WCSAM
2013 " " ) i
Rich Hilary, m “New” Ry from 1988 - better fits, removes residual trends
CSIRO
Wealth from
Ocoans m If steepness the cause, Morwong steepness ~ 0.33...
National
Research
Flagship m Correlation with westerly wind index lost around 1988
m Climate change (I mentioned it!) strongly seen in region
m Regime-shift in mean recruitment looks plausible...
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Keep looking and you'll keep finding...

spacetime
WCSAM

2013 m Over optimistic to assume these are rare exceptions

Rich Hillary,
CSIRO
Wealth from m All these examples affect assessment and management

Oceans

National
Research m Generally, seems to appear because:

Flagship

Something in your model looks wrong

You go looking for it with alternative models

You actively collect/happen to have spatiotemporal data

m Don’t need climate change invocation = see it more often
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What tools do we need?

Moving

through

fisheries

spacetime .. , .

WCSAM m Statistically we've got the necessary machinery:
2013

Rich Hillary, Random-effect/hierarchical state-space models
CSIRO

. Spatio-temporal smoothers (tensor product splines)
Oceans Non or semi-parametric approaches (GP, neural networks)

National

"F’ijfg;icl‘)‘ B Spatial models & the means to parameterise them
m Freedom being explored for selectivity and catchability

m Often subjective: fixed variance REs or spline DFs

m Future: more rigorous use of CV and REML for the above
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Fisheries relativity

spacetime
WCSAM
2013 i . i i
Rich Hilary, m A brazen attempted linkage with high-level physics...
CSIRO
e m Not replacing Baranov with Einstein field equations...
National
Research
Flagship m But are space and time really that distinct in our work?
m Changes in time often about space (selectivity, maturity)
m Thinking in a more spacetime frame of mind in the future
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Relative influence of assessment frequency and
assessment model structure on fishery
manage

ment performance
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Objectives

* For the current harvest policy of 65% total

mortality on the maximally se

[Lake whitefish in Great Lakes]:

ected age

— Compare fishery performance for alternative

timings of the assessments

— Contrast the magnitude of these effects with
effects of other assessment choices

Quantitative Fisheries Center at Michigan State University




Basic approach (stochastic simulations)

Model true system (operating model)

— Stochastic age-structured population

Model observation and assessment process (feeds back to
system)

Need defined management strategy (includes assessment
approach and harvest control rule: 65% max total
mortality)

Evaluate with performance statistics

Quantitative Fisheries Center at Michigan State University



Simulation methods

o 4 hypothetic populations
* with differing levels of productivity
o Mixing during the harvest season
o Spawning site fidelity
o 100 year simulations, 1000 simulations per scenario

o Performance based on last 25 years

Quantitative Fisheries Center at Michigan State University



All simulations done using ADMB

Quantitative Fisheries Center at Michigan State University



N

Performance statistics

Based on the result of last 25 years of 100 year simulations

" Proportion of years SSB < 20% unfished by area
= Average SSB by area

" The average total yield achieved across all areas and
by area

" |nter-annual variation in yield across areas and by
area

" Median relative error of estimating SSB

" Median absolute relative error in estimating SSB

Quantitative Fisheries Center at Michigan State University



Experimental Design

o 8 options for timing of assessment

o 5 mixing scenarios
o 3 levels equal among populations

o Positive and negative correlations between movement and
productivity

o 2 assessment models (separate and pooled(CPE))

Quantitative Fisheries Center at Michigan State University
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8 options for timing of assessment

Assessment frequency

* Annual
— With lag
— Without lag

e 3 vyear cycle
e 5vyear cycle

Quantitative Fisheries Center at Michigan State University



8 options for timing of assessment

Setting TACs for
rotation years

* Constant

* Target F
* 3yearcycle + Adjusted by yield
* Syearcycle information

Quantitative Fisheries Center at Michigan State University



Low Productivity Population Result‘
Proportion of years SSB < 20% of Unfished

SsR=0.9 SsR=0.5 SR=0.25 po-cor ne-cor

1.00

0.757

0.50+

aljeladag

o
e
S
|
004

LO L1 LO L1 LO L1 LO L1 LO L1

Annual assessment : LO (without lag) VS. L1(with lag)

Quantitative Fisheries Center at Michigan State University



Low Productivity Population Results
Proportion of years SSB < 20% of Unfished

Annual
assessment : L1

Seperate Pool

0.8

3 year
assessment :
CT3, TF3, AY3

0.6

5 year
assessment :
CT5, TF5, AY5
CT:

constant TAC

P (SSB < B20%)
B
§'0=4S

0.2

TF:
Target F

0.0+

L1 CT3 CT5 TF3 TF5 AY3 AY L1 CT3 CT5 TF3 TFS AY3 AY AY:_
Adjusted by

yield info

Quantitative Fisheries Center at Michigan State University



Conclusions

v The influence of lag was generally small.

v’ Target F method for multi-year assessments has much to
recommend it.

v’ Conservative rule
v’ Can be calculated for all years at time of assessment

v The effect of less frequent assessments is modest.

v’ Differences due to assessment model or approach to rotation as
large or larger than those due assessment frequency.

Quantitative Fisheries Center at Michigan State University
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Spawning season

Spawning Spawning

site of LP site of MLP

population population )
LP ~ HP: low to high
productivity populations

Spawning Spawning

site of HP site of MHP

population population

LP area MLP area Fishing season LParea  MLP area
---------- . fmm——————— S LT o pmmm——————
Spawning | i ! Spawning Spawning I | Spawning
. éﬂ—
site of LP :9 e' site of MLP site of LP '%,—ueé' site of MLP
population i . population population ! :' | population
i —————— J 0l e e e e e e e et St e St e e - - i ————— %\———1———-
———=——=—-n el -~ - =~ o= e e iniabetallt
Spawning 1 : Spawning Spawning I " i I Spawning
site of HP 1> e. site of MHP site of HP '7_%7 site of MHP
populatlon ! , population populatlon ! " . population
_________ 4 - T — n e ——
HP area MHP area HParea « MHP area

Quantitative Fisheries Center at Michigan State University




+* Simulation length of 100 years

s Alternative assessment models; alternative assessment frequencies

J/

+* 1000 simulations for each model _ , _
Repeat the simulation loop 1000 times

Year 1 Year2 ... .. Year 100
Year 4 or year 6

1

I -

: o ., S

1 AR ,

) > e L.
iTrue system dynamics model

a

1

1

1
1
1
H Observation
:
1
1

TAC

data
I oot neorng Pt
=5 "‘”‘i"‘ Assessment Harvest
I M:::he::sem > H H
: .I,..._. ¢ setng model control
| T
1

The simulation framework

Quantitative Fisheries Center at Michigan State University
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7 Outline

» Yellowtail Flounder
Background

» Tag-Integrated Modeling
Framework

» Impacts of Connectivity

» Does Movement Resolve
Closed Population Model
Residual Patterns!?

» Conclusions



» There are 3 stocks of yellowtail flounder off New England
> The offshore Georges Bank stock is much larger than the other stocks

» 4 years of tagging data indicates that movement is limited
between each stock

» Question to explore: Does connectivity lead to uncertainty in
closed population assessments of each stock!?




» Spatially-explicit population dynamics equations
require the addition of movement parameters and
tracking of ‘unit’

_ [_(Vk, -1,a— I:k, — +M)]
=) T iy Ny € e
k

» The tag-integrated Tagging I
8 g Model Model
framework incorporates

raw tagging data directly ?
into the model using:
> A tagging sub-model Al

Movement
> A tag component in the objective function Model



» Modeled Dynamics

Temporal Spatial

Fall
Survey

Spawning
(Summer)
Tagging
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» Movement estimates and reporting rates () are relatively low
o Southern New England acts as a source in the metapopulation

B=I 0‘7 0%

i

Biomass Leaving a Stock Area

5000

---- Cape Cod
- ---- Georges Bank
---- Southern New England

4%

4000

Biomass {mt)
2000

Tagging Data
Only for These
Years \

I5°/o 1985 1990 1985 2000 2005

Year

2000

1000




c - o = e «\
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» Interpretation of regional recruitment events differ

Southern New England Recruitment — 1987 Year-class
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» Interpretation of regional recruitment events differ

Movement or
Cape Cod Recruitment Region-wide Georges Bank Recruitment
== Recruitment Event?

20000
|

Be+04
|

---- Tag-Integrated Model
---- Closed Population Model

15000
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Ee+(

10000
|

Fecruitment (1000s of fish)
de+04

Recruitment {1000s of fish
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0
|
Oe+00

| | | | T
1985 1990 1995 2000 2005 1985 1990 1995 2000 2005

Year Year



SSB (mt)
1500 2000

1000

500

Cape Cod Spawning Stock Biomass

SSByyey=7,790mt

---- Tag-Integrated Model
---- Closed Population Model

SSE (mt)

1890 1995 2000 2005

Year

» Regional population trajectories are only moderately
impacted by connectivity

Georges Bank Spawning Stock Biomass
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Biomass (mt)

Main uncertainty in currently accepted assessments are sudden increases in
Georges Bank survey biomass
> Inconsistency in signals between survey and catch data have caused retrospective patterns

GB Fall Predicted and OBS
Area Swept Survey Biomass

=
= _
5 # 0BS5S Fall —— PRED_Fal
= *
E —
*
=
E 1 * * #*
o _ %

I I I I I
1985 1990 1995 2000 2005

Year

[In{ Obsg)=In{ pred))/SD

GB Fall Survey
Biomass Standardized Residuals
| .
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I I I I I
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Year



» Connectivity does not resolve residual patterns

Biomass (mt)

10000 15000

5000

GB Fall Predicted and OBS
Area Swept Survey Biomass

# 0BS Fall —— PRED_Fal

I I I I I
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Year
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= R

Southern
Totals for Cape Georges New

» Limited tagging information, but [FEPEseRNE g =i
available data agrees with England

historical studies 11611 28814 5236
o Tag-integrated model results are
consistent across sensitivity runs 959 12 7
and indicate connectivity does not
have a large impact on results 23 2205 32
» Interpretation of recruitment
does change 4 3 29

> There are likely implications for
management

» Simulation analysis is required to
test performance under longer
tagging time-series
o Currently in progress
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To split or not to split? Assessment of
Georges Bank sea scallops in the
presence of MPAs

Deborah Hart, Larry Jacobson and Jiashen Tang
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Most stock assessment models assume

that fishing mortality risks at size or age
does not vary spatially

Fishery closed areas, often termed
“Marine Protected Areas” (MPAs),
explicitly violate this assumption



What can be done in a stock assessment
that contains MPAs?

Choice 1 (Aggregated model): Model aggregated stock
with domed commercial selectivities for periods when

the MPA was closed to fishing

Advantages: Simplicity, less parameters, does not require
uncertain splitting of landings inside and outside MPAs

Choice 2 (Split model): Model MPAs and fished areas
separately (two models, “Open model” and “Closed

model”)

Advantages: More accurate population dynamics, ability to
evaluate responses inside and outside of MPA, potential to
estimate M
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40°N

Three large areas on or near Georges Bank were

closed to groundfish and scallop fishing in Dec 1994
Strong responses to the closures seen in two stocks only: GB sea

scallops, GB haddock

Some species showed weak or ambiguous responses, but many

showed little or no response to the closures

Portions of the closed areas have been reopened to limited scallop fishing
between June 1999-Jan 2001 and again since Nov 2004
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Georges Bank sea scallop assessment

Statistical catch at size model (CASA) with stochastic growth
matrix based on shell ring increments, coded in ADMB

Tuned to survey and fishery catch at size

Compare aggregated model with split models
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Closed Area “split” model
Estimated fishery selectivity curves

fishery selectivity
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Open Area model
Fishery selectivity curves
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Comparison between aggregate and split models

Good agreement except final few years
Expanded survey trend more supportive of split model
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Biomass (mt meats)
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Estimation of natural mortality

Estimate from closed area model is M = 0.16, with
95% confidence interval (0.13,0.19)

Estimate from open area model is M =0.11, with 95%
confidence interval (0.05,0.25)

Estimate in aggregate model is M = 0.20, with 95%
confidence interval (0.16,0.24)

“Current” estimate is M =0.12, based on Merrill and
Posgay (1964) — estimate of M = 0.16 is very plausible



Model evaluation through simulations

1000 simulations, simulated by independently coded and more
spatially complex SAMS model (Scallop Area Management Simulator)
F uniform spatially and temporally increasing prior to closures, then

decreasing in open areas after closures, zero in closed areas with low
F after reopenings

Realistic levels of observation errors added
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The two approaches gave similar estimates when they converged,
with a slight edge to the split approach. However, the split approach
converged (i.e., both open and closed models converged) in 93% of
the cases compared to only 17% of the aggregate runs. Difficulty in

Simulation Results

estimating the domed selectivities was a major issue.
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To split or not to split?

. Both approaches possible, but split models are simpler to fit
and may be more accurate

. Split models give information on closed/open dynamics and
possibly accurate estimate of M from closed area model

. Domed selectivities due to closures are not temporally stable,
which may cause problems fitting them

. Caveat: In more mobile stocks, there would be movement
between open and closed areas, causing problems with the
simple split approach —the aggregate model or a more
complex model may be needed

Reference: Hart, Jacobson, Tang. 2013. Fish Res 144:74-83



EVALUATING THE EFFECTS OF
MIXING RATES BETWEEN ATLANTIC
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At least two y
spawning locations £

High degree of
natal homing

High degree of
spatial overlap

Map modified from Pew Environmental Group



Bluefin Tuna Assessment and

Management
Distribution of catch 2000-2009
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Objectives

« Develop an operating model for bluefin tuna that
Incorporates the leading hypotheses of bluefin
tuna stock structure and mixing

« Use simulation to examine the impact of
connectivity on productivity, yield, and rebuilding
goals for bluefin tuna stocks.




Model Basics

Two stocks
Stochastic and age-structured (age 1 to 30)

Temporally (quarters) and spatially-explicit (7 zones)
Overlap model

Model Inputs:

— Life history: growth, maturity, natural mortality, recruitment
— Movement matrix (MAST model)

— Fishing mortality by fleet (MAST model)
Model Outputs: SSBs,z,y,gand Yields,z,y,q




Gulf of Maine

Model Framework i il

Spatial strata are informed by
distribution, life history, fishery, and
management of bluefin tuna
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Life History Parameters LA

West East
L =315 L..=319
k =0.089 k =0.093
t,=-1.13 t,=-0.97
a=2.86x10" a=2.95x10"
b=2.93 b=2.90
50% @ age 12 50% @ age 4
100% @ age 16 100% @ age 5
Low: R__ =384,363 .
B. =12,236 ed:

Growth

Length-weight

Maturity

: SSByinge
| - 1

Recruitment High: o= 432,082 R o _,889,896

B= 61344 SSB,inge= 215,584

Natural mortality Age—specific vector informed by-tagging
experiments on southern bluefin tuna




Movement Rates:

MAST m O d el Taylor et g

Conventional Tags (n = 47,439)
ICCAT database

20
mem ©

Ot0|lth chemlstry Rooker et al. 2008

Research Institute

Archival (n = 122) and PSAT Tag (n = 220)
| Blpck et al. 2001, %OOS, Sibert 2006
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Simulation Scenarios e et e

Bulk Transfer Method

Direct estimation of movement
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Spawning Stock Biomass
Gravity Method
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Yield Composition
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J

£

90°W

i

12%

Aflanfic O dean

1
rdy

7

80°W

70W

m—

Western stoc?_’\BL

60°W

50°W

40°W

[_] Eastern stock

30°W

20°W

10°W

Ugo Montaldo

i
: #

i ™

0° 10°E 20°E 30°E



Yield Composition
Gravity Method
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Conclusions

« Assuming no connectivity may give a false
Impression of productivity and sustainable yield
for western stock.

 Different movement estimates produce

substantially different expectations of SSB and
yield.

 Interaction between maturity, movement, and
fishing mortality drives results.




Research Institute

Model Sensitivities

 New model....same old problems

— Are life history parameters representative of stock?
« Recruitment, maturity, growth, natural mortality

— Consistency in estimation of parameters

« Use of parameter estimates from stock assessments that
assume no movement may be unrealistic

 |nteraction between maturity, movement and
fishing mortality

— Evaluate alternative maturity assumptions and new
approaches to estimating movement rates




2 Gulf of Maine

Approaches to Assessment & Manademeﬂt

S [, e 8 ~ g

Western Stock Eastern Stock

« Current approach: VPA B D

— Ignores mixing

— Confounds management
« Spatially explicit assessment

— Estimates movement

— Over-parameterized or overly

simplified

* Intermediate Approach

— Build stock composition data
Into existing assessment

— Spatially-explicit two stock
projections

Taylor et al. 2011
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Simulation Scenarios

Bulk Transfer Method

Direct estimation of movement (R = 1-Ym)
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Gravity Method

Direct estimation of residency (m = 1-R/z-1)
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An integrated modeling framework
for assessing Antarctic krill
(Euphausia superba)

Doug Kinzey, George Watters
Antarctic Ecosystem Research Division
NOAA/NMFS/SWFSC

La Jolla, CA 92037 USA
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Antarctic krill fishery (Area 48) and AERD 1992-2011 surveys
-200,000 tonnes caught annually, CCAMLR treaty

-60.3 million tonnes in 2.1 million km? (2000 survey)
-5.61 million tonnes precautionary; 620,000 “trigger”
-AERD surveys represent about 6% of Area 48
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Krill length-compositions 1992-2011

Combined areas and legs
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Model framework

Age-structured
Modified from Amak v.0.1

Movement, mortality-emigration, steepness, etc. can be
estimated or pre-specified

Uses data from
1) length-compositions from the trawls
2) biomass densities from trawls, and
3) biomass densities from acoustics




Model configurations

* Logistic or double logistic selectivities

 Single source (nets or acoustics) of biomass data, or combined
biomass data sources

* Areas can be modeled as
combined
separately without movement
with movement among areas




Movement

* Movement is estimated as an emigration rate from each of
the four areas to the other three (12 rates estimated)




* Fits to data and MICMC results

Results from example model
configurations

1-area combined models
4-area separated models




1-area models with single data source for
biomass fit with CVs of 0.01

Acoustic biomass only Traw! biomass only

logistic g
selectivity
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Simulated data (self-check)

* Use the parameter estimates from a “generating model”
based on the original field data to assemble a simulated data
set

* Supply the simulated data to an estimating model, check fits
of estimated to “observed” values

* Purpose is to check internal consistency of the model
structure and equations




4-area, both biomasses, logistic, movement
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4-area, both biomasses, logistic selectivity,

biomass fits to original data

movement
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4-area, both biomass sources, logistic selectivity,
movement: composition fits to original data

0.04 0.08

0.00

0.00 002 0.04 008

0.04 0.08

0.00

0.00 004 008

1992 E.I. (Jan)
(N=53)

20 30 40 50 60

1997 E.I. (Jan)
(N=66)

2003 E.I. (Jan)
(N=38)

2008 E.I. (Jan)
(N= 33)

‘; T T
20 30 40 50 60

0.06

0.03

0.04

0.00

0.08

0.04

0.00

0.04 0.08

0.00

1993 E.I. (Jan)
(N= 64)

)l ‘
T
30

40 50 60

1998 E.I. (Jan)
(N=55)

I,
L
20 30 40 50 &0

2004 E.|. (Jan)
(N=40)

2009 E.I. (Jan)
(N=43)

0.00 004 008 012

0.04 0.8

0.00 004 008 012 0.00

0.04 008

0.00

1994 E.I. (Jan)
(N= 50)

1999 E.I. (Jan)
(N=27)

2005 E.I. (Jan)
(N=44)

2010 E.I. (Jan)
(N= 24)

0.00 004 008 012 0.00 0.04 008 012

0.04

0.00

1995 E.I. (Jan)
(N=63)

2001 E.I. (Jan)
(N= 54)

2006 E.I. (Jan)
(N=39)

2011 E.L (Jan)
(N= 37)

0.04 008

0.00

0.02  0.04

0.00

0.02 0.04

0.00

1996 E.|. (Jan)
(N=69)

=T T T
20 30 40 50 &0

2002 E.I. (Jan)
(N=40)

2007 E.I. (Jan)
(N=47)




MCMC results (models based on original
data vs. simulated data)

* Spawning biomass
* Recruitment abundance

* Mortality (and emigration outside sampled areas)




1-area model MCMCs, logistic selectivity

gration

emi

Mortality-

Abund. (log N)

Recruitment

Spawning biomass (log t)

g9 09 ¢S5 0§ S¥ 0¥

T T T I T T T
LL 0L 6 8 L 9 S

elep |eulsuQ

2000 2005 2010

1995

1985 1990

2000 2005 2010

1995

1985 1980

1995 2000 2005 2010

1985 1990

T T T T T
0Ll g9l g9l 9l 29l

elep paie|nwis

1995 2000 2005 2010

1985 1990

2000 2005 2010

1995

1985 1980

1995 2000 2005 2010

1985 1990

Year



tic
Mortality-emigration

IS

double log

1-area model MCMCs,

L0 90 S0 o €0

nd. (log N)

Abu

Recruitment

Spawning biomass (log t)

T T T T T
§9L 09L GSL 0SL S¥L 0¥l

elep |eulsuQ

1990 1995 2000 2005 2010

1985

1990 1995 2000 2005 2010

1985

19980 1995 2000 2005 2010

1985

0g0 s¢°0

T T
0z'0 SL'0

elep paie|nwis

1990 1995 2000 2005 2010

1985

1990 1995 2000 2005 2010

1985

19980 1995 2000 2005 2010

1985

Year



1-area model selectivities

Acoustic Biomass Trawl Biomass
Logistic selectivities ° °
2 6 8 0 2 6 8 0
A tic Biomas: Trawl Biomass
Double logistic selectivities S 2
2 4 6 8 10 2 4 6 8 10




4-area model MCMCs:
Elephant Island

Spawning biomass (logt) Recruitment Abund. (log N) Mortality-emigration

without . : ;
movement ) ;
original (logistic) N
without .
movement
simulated(logistic 5
)

1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010

without
movement :
original (double s
logistic)
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Summary

* Fits using simulated data verified that the modeling
framework could reproduce "perfect” data.

* The MCMC patterns using the original and simulated
data of estimated spawning biomass, recruitment, and
M-emigration were similar but in some cases scaled
differently between models.

* Models with logistic selectivity tended to estimate much
lower spawning biomass, higher recruitment, and higher
mortality-emigration than double logistic models.

* Double-logisitic models sometimes failed to converge
(i.e. when movement was estimated), and when they did
converge needed longer MCMC run times (at least) than
applied in this study.




Future work

* Pre-specify high rates of movement instead of estimating
movement.

* Apply longer MCMC sampling runs.

 Calibrate acoustic densities using krill lengths from the model
instead of lengths observed in the trawls.

* Supply simulated data sets representing a system with
movement to estimating models without movement to assess
the effect of ignoring movement when it occurs.




Modeling intermixing lake whitefish
populations: a simulation study to evaluate

alternative stock asse

ssment methods

Yang Li, Jim A'I“3'e“nce,€rrévi,sf Brenden

Quantitative Fisheries Center A
Michigan State University, East LanSing, Michigan -

Quantitative Fisheries Center at Michigan State University
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Comparing fishery management and
assessment methods in context of
movement among areas

* Separate population assessment

e Pooled assessment with two TAC allocation rules

— Catch Per Effort (average of last 3 year)
— Equilibrium Yield

* Meta-population assessment

Quantitative Fisheries Center at Michigan State University



Basic simulation approach

Repeat the simulation loop 1000 times
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Spawning season
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Quantitative Fisheries Center at Michigan State University



Population model details

e Age structured with stochastic Ricker Stock-
Recruitment

e Harvest Control Rule is 65% total annual
mortality on maximally selected age

 Model includes process error (recruitment),
observation error (assessment), and
implementation error

Quantitative Fisheries Center at Michigan State University



Experimental Design

o 4 levels of stay rate (SR)
* High: 0.9; Mid-high: 0.75; Mid-low:0.5; Low: 0.25

o 7 mixing scenarios
o 4 stay rates given above (same for each population)

o 3 Scenarios with stay rates varying among pops

Quantitative Fisheries Center at Michigan State University



Performance statistics

Based on the result of last 25 years

Proportion of years SSB < 20% unfished by population
The average total yield achieved across all areas
Inter-annual variation in total yield

Median relative error of estimating SSB

Quantitative Fisheries Center at Michigan State University



Seperate Pool(CPE)
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Results for other performance statistics

(1 Pool(CPE) assessment method provided slightly higher total

vield than separate assessment method.

 Pooled assessments have lower annual variation of yield.

 Pooling stocks provided a nearly unbiased estimator of SSB.

Separate method had negative bias.

Quantitative Fisheries Center at Michigan State University



Results for two other assessment methods

* Meta-population assessment did not work
with high mixing rate. Population-specific data
heeded.

* Pooled assessment with constant allocation
did poorly with very low and very high
Intermixing.

Quantitative Fisheries Center at Michigan State University
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Management Implications

* Current 65% total mortality control rule: not
conservative enough for low productivity
population?

* Without knowing the productivity level and
mixing rates, pooled(CPE) method could
outperform separate assessment method

— Stable performance and good across the
performance statistics

Quantitative Fisheries Center at Michigan State University
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The average total yield achieved across all areas



Inter-annual variation in total yield
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Median relative error (MRE) of estimating SSB
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A spatio-temporal simulation model to evaluate

hods and i I 1
assessment methods and management strateqgies :
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Marine Laboratory, Aberdeen
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Introduction: Problems with MSESs marinescotland

Fish stocks Fishery

WCSAM
Boston, 17-19 July 2013
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Introduction: Problems with MSES




Introduction: Spatial data (VMS)
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Whiting Aggregated landings
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Introduction: Spatial data (REM) marinescotland

330000000000000000005)

® VMS pings

© Sensordata

Nautical Miles

WCSAM
Boston, 17-19 July 2013



Spatial model: area definition marinescotland

« Hexagonal structure

« Layers built up by
random walks:

— Deep
— Medium
— Shallow
— Land
— Coast

« Home port chosen
at random

WCSAM
Boston, 17-19 July 2013



Weight (kg)

Spatial model: fish stock dynamics

15

10

w.inf = 14.467
w.k = 0.322
w.b =416

O

Age

10

15

marinescotland

Based on North
Sea cod:

— Growth

— Natural mortality
— Maturity

— Recruitment

— Selectivity

Plus hypotheses
on:

— Carrying

capacity
— Diffusion
— Price

WCSAM
Boston, 17-19 July 2013



Spatial model: skipper decision-making  marinescotland

Week 229

Distance = 12 hexes; Yield = 10.5; Profit = £5111

One hex fished per
week

Decision based on
harvest rule

— e.g. Maximise
profit

Stays in port if profit

likely to be negative

Assume perfect
knowledge

A* path-finding

WCSAM
Boston, 17-19 July 2013



Case study: real-time closures marinescotland

* 4runs:
— With and without RTCs
— Two simulated maps
« 100 iterations for each:
— Only differing in recruitment time-series
« 30 years in each:
— Years 1-10: no fishing
— Years 11-20: unregulated fishing
— Years 21-30: either unregulated fishing, or
 |If SSB < “B(lim)”
* Then close 2 hexes with highest abundance

WCSAM
Boston, 17-19 July 2013



Case study: real-time closures marinescotland

total numbers = 390 total SSB = 41026 kg

Scaled age dist for cod
® |[nland Coast @ Shallow ® Medium ® Deep

Stock numbers

5 10 15
Age

WCSAM

cod: iteration = 1, week = 25, year = 21 Boston, 17-19 July 2013



Case study: real-time closures marinescotland

Fishing location summary (year 21)

® |nland Coast @ Shallow ® Medium ® Deep

WCSAM
Boston, 17-19 July 2013



Case study: real-time closures marinescotland

Fishing location summary (total)

® |nland Coast @ Shallow ® Medium ® Deep

WCSAM
Boston, 17-19 July 2013



Case study: real-time closures marinescotland
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Case study: real-time closures

Abundance

Catch
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marinescotland

WCSAM
Boston, 17-19 July 2013



Case study: real-time closures marinescotland
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On average: ~50% of weeks spent in port

WCSAM
Boston, 17-19 July 2013




Case study: real-time closures marinescotland

Fishing location summary (total)

® |nland Coast @ Shallow ® Medium ® Deep

WCSAM
Boston, 17-19 July 2013



Case study: real-time closures

Number of iterations
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On average: ~5% of weeks spent in port

WCSAM
Boston, 17-19 July 2013




Case study: real-time closures marinescotland

« Effectiveness of closures depends on spatial orientation
of vessels and fish

— Closures increase catch only if home port close to
fishing grounds

— Closures increase SSB in both cases

* Would not have been apparent without explicit
modelling of space

« For next time: application to real world examples

WCSAM
Boston, 17-19 July 2013



Conclusions marinescotland

* |f the stock and/or fishery is not evenly distributed

— Then consideration should be given to spatial
evaluation of assessment and management

« Spatial management measures should always be
evaluated spatially

* The simulation should be parsimonious:
“The danger in creating fully detailed models of complex systems

IS ending up with two things you don’t understand - the system
you started with, and your model of it.” (Paola 2011)

WCSAM
Boston, 17-19 July 2013



Thanks...

marinescotland
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Dealing with Temporal Structure with Bayesian Surplus Production Models:
Georges Bank Yellowtail Flounder

Joseph O’Malley?, Jon Brodziak?, Yi-Jay Chang?

1 National Marine Fisheries Service, Pacific Islands Fisheries Science Center
2 Joint Institute for Marine and Atmospheric Research, University of Hawai’i
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Overview

Bayesian Surplus Production Model
- hierarchical framework for time-varying productivity
- hypotheses
- scaling via prior

Strategic Initiative on Stock Assessment Methods (SISAM) Exercise
- GB yellowtail flounder issues
- potential changes in productivity
- retrospective patterning

Results
- best fit model
- model averaging
- temporal variability?
- retrospective pattern?

Final Statements




Bayesian Surplus Production Model
M

BT—1) c
—Cr_4

K

Bt=BT_1+r*BT_1 1—(

Process error

- population biomass dynamics
Observation error

- heterogeneous

- observed data from multiple surveys

3 parameters
- r = intrinsic growth rate
- K = carrying capacity
- M = production shape parameter

Key estimates
- biomass
- harvest rate
- biological reference points
- BMSY = biomass that maximizes surplus production
- Bratio = B/BMSY
- HMSY = harvest rate that maximizes surplus production
- Hratio = H/HMSY



Strategic Initiative on Stock Assessment Methods (SISAM) Exercise
Yellowtail Flounder Retrospective Patterning

rho =162

ralative change in 5539

. s

Why retrospective pattern?
1- large amounts of unreported catch
2- an increase in natural mortality
3- changes in survey catchability since 1995

“Residual patterns are indicative of a discontinuity starting in 1995”

Solution - split time series into pre- and post-1995
- retrospective adjustment to terminal year

Different approach
Time-varying hierarchical Bayesian surplus production model



Data available

8
2

Catch (landings and discards) = 1958-2012
Catch-at-age = 1973-2011

Surveys:
- DFO spring survey index 1987-2011
- NMFS fall survey index 1973-2011 h“ um ||| ‘ I M‘“
- NMFS spring survey index 1973-2011 0 ......|I|I||| “‘I| |“||‘I “nl‘ ‘|III||
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Last assessment — 2011
- VPA calibrated using the adaptive framework ADAPT



Hypotheses: Time-Varying Population Dynamics

Data and Model Parameters

1) Abundance Indices (surveys)
- single series (4 surveys) vs. split-series (7 surveys)

2) Intrinsic Growth Rate (r)

- r (one r for all years)
- 2r (one r for 1973-1994, one r for 1995-2011)
- *r (every year gets an r)

- “multiple r’

3) Carrying Capacity (K)
- K (one K for all years)
- 2K (one K for 1973-1994, one K for 1995-2011)

4) Production Shape and Scale (M)

- M (one M for all years)
- 2M (one M for 1973-1994, one M for 1995-2011)



Hypotheses testing

surveys split at
# MSY
1994/1995?

gbyt single no (4)

Priors and distributions...



Model Selection Criteria

Deviance Information Criteria = DIC

DIC = 2:D-D(6) = D+ p,

[D =the posterior mean of the model deviance,

D (6’) =the value of deviance evaluated at the posterior mean of the stochastic variables in the model,

pD = the effective degrees of freedom in the model.

Spiegelhalter et al. 2002



Model Selection

surveys B2011/
split at Hr| #K #MSY | DIC |DeltaDIC
1994/1995? Y
1 1 0 1.25

no(4) 39 1 408.03

no(4 1 1 1 1 408.09  0.07 1.19
ves(7) 39 1 1 1 45572 47.69 1.03
ves(7) 1 1 1 1 455.92 47.90 0.98
ves(7) 2 1 1 2  457.16 49.13 1.26
ves(7) 2 2 2 2 457.72 49.69 1.37
ves(7) 2 2 1 2 46034 52.31 1.83



Scaling

Yankee 36 trawl
- NMFS spring survey — 1982-2011
- NMFS fall survey — 1973-2011

Survey catchability coefficents = 0.39 (precision = 105.2)
- (Edwards, 1968)

Setting the Yankee 36 net in the
snow, Albatross IV, circa 1966.
(Credit: Robert Brigham/NOAA)



surveys splitat | # | # # B2011/
DIC Delta DIC

1994/1995? r | K MSY VNG

gbyt_ns_*r no (4) all 1 1 1 408.03 0 1.25

gbyt_ns no (4) 1 1 1 1  408.09 0.07 1.19

gbhyt_*r yes (7) all 1 1 1 455.72 47.69 1.03

gbyt yes (7) 1 1 1 1 45592 47.90 0.98

gbyt 2r yes (7) 2 1 1 2 457.16 49.13 1.26
gbyt_2rKM yes (7) 2 2 2 2 457.72 49.69 1.37

gbyt 2rK yes (7) 2 2 1 2 460.34 52.31 1.83

gbyt ns_*r_Q

Model averaging is appropriate



Best Fit Model Survey Residuals

NMEFS spring STD_LOG_RESID NMFS fall STD_LOG_RESID

1973 1978 1983 1988 1993 1998 2003 2008 1973 1978 1983 1988 1993 1998 2003 2008

DFO STD_LOG_RESID
.
2,5 A

. All chains converged to posterior
15 - distributions.
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Biomass Comparisons

Biomass (mt)
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Retrospective Analysis

Biomass relative to 2011
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Time-Varying r
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Georges Bank Yellowtail Flounder

- Results indicate time variation is important
- as evident by annual r estimates plot

- no need to split the data in 1995
- best fit models were both “non-split”

- Survey catchability estimates helped with scaling issue

- Reduced retrospective patterns




Hierarchical Bayesian Surplus Production Model

- Relative abundance indices are suitable for biomass dynamic models
- Time varying processes affect biomass production

- Explore alternative hypotheses:
- constant or time-varying productivity

- Model selection/averaging to assess credibility of alternative hypotheses

- Parsimony
- easy to run



Joseph O’Malley
- joseph.omalley@noaa.gov

Jon Brodziak
- jon.brodziak@noaa.gov

Yi-Jay Chang
- yi-jay.chang@noaa.gov

Jeff Rotman—Stone/Getty Images






Parameter Estimates

Model BMSY1 BMSY2 HMSY1l HMSY2 K K2 MSY1 MSY2 ri1 r2 B2011 B2011_statusl B2011_status2
gbyt 65.40 0.16 139.20 8.94 0.45 55.49 0.9854

gbyt ns 63.63 0.19 134.50 10.08 0.48 99.32 1.192

gbyt_ns_Q 27.38 0.42 57.32 10.28 1.03 27.89 1.066

gbyt_2r 67.52 67.52 0.13 0.31 144.10 7.44 19.27 0.38 0.95 77.97 1.264 1.15
gbyt_2rK 61.39 71.83 0.18 0.39 138.80 163.30 8.79 24.47 0.59 1.19 100.20 1.834 1.39
gbyt_2rKM 69.77 79.47 0.15 0.41 167.10 177.10 7.99 28.30 0.74 1.16 112.00 1.367 1.41
gbyt_mr 66.66 0.16 143.00 9.29 0.49 59.14 1.03

gbyt_ns_mr 67.61 0.19 143.60 10.71 0.54 76.50 1.251

gbytns_mr_Q 33.50 0.36 71.28 10.40 1.11 35.76 1.158

VPA assessment 43.20 5 46.00 0.11

gbyt model avg  31.01 0.38 65.60 10.35 1.02 32.56 1.1205



Model
ghyt
gbyt ns
gbyt ns_ Q
gbyt 2r
gbyt 2r K
gbyt 2r KM
gbyt mr
gbyt ns mr
gbyt ns_ mr_Q

DFO DFO NMFS NMES NMFES
spring 1 spring2 Spring1l Spring2 Spring 3
0.13 0.20 0.03 0.05 0.08
0.13 0.15 0.03 0.05 0.06
0.15 0.18 0.04 0.06 0.07
0.14 0.17 0.03 0.05 0.06
0.18 0.19 0.03 0.05 0.07

split models

NMFS
Fall 1
0.05

0.04
0.05
0.05
0.04

NMFS
Fall 2
0.09

0.07
0.08
0.07
0.08

DFO
spring

0.14
0.34

0.13
0.27

non-split models

NMFS NMFS NMEFS
Spring1 Spring 2 Fall

0.04 0.05 0.05
0.08 0.13 0.13
0.03 0.05 0.05
0.06 0.10 0.10
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Figure 19. Trends in relative fishing mortality (catch biomass/survey biomass). standardized to . ) ) N
the mean for 1987-2010. Figure 20. Trends in total mortality (Z) for ages 2, 3. and 4-6 from the four surveys.
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Figure 26h. Eelative retrospective plots for Georges Bank vellowtail flounder from Split Senies

VPA with Mohn's rho calculated from seven vear peel for age 4+ fishing mortality (top panel).
spawning stock biomass (middle panel). and age 1 recruitment (lower panel).




\Y - Itrnsic Growth Rate (r) Carrying Capacity (K) Prior Production Shape (M) Prior
Periods? Prior

- simple Bayes lognormal - simple Bayes lognormal - simple Bayes Gamma

gbyt_2r - hierarchical normal hyperprior - simple Bayes lognormal - simple Bayes Gamma
- lognormal prior

gbyt_2rK - hierarchical normal hyperprior - hierarchical normal hyperprior - simple Bayes Gamma
- lognormal prior - lognormal prior

gbyt 2rkKM - hierarchical normal hyperprior - hierarchical normal hyperprior - hierarchical normal hyperprior

- lognormal prior - lognormal prior Gamma Prior

- hierarchical normal hyperprior - simple Bayes lognormal - simple Bayes Gamma
for all years
- lognormal prior

- simple Bayes Lognormal - simple Bayes lognormal - simple Bayes Gamma

- hierarchical normal hyperprior - simple Bayes lognormal - simple Bayes Gamma
for all years
- lognormal prior




Target_K_Prior_Avg=150,
CV_K=1.0,
CV_Hyper_K=1.0,

Target_r_Prior_Avg=0.5,
Cv_r=1.0,
CV_Hyper_r=1.0,

M_shape_Hyper_Avg=2.0,
M_shape_Hyper_Precision=1.0,

M_scale_Hyper_Avg=2.0,
M_scale_Hyper_Precision=1.0,

Target_P1_Prior_Avg=0.50,
Cv_P1=1.0,

Prior values

g_shape_S$1=0.01,
g_scale_$1=0.01,

g_shape_S$2=0.01,
g_scale_$2=0.01,

g_shape_S$2a=0.01,
g_scale_S2a=0.01,

g_shape_S$3=0.01,
g_scale_$3=0.01,



Model Run Specifics

- Markov Chain Monte Carlo Simulation (WinBUGS software)
- 3 chains

- 310,000 Iterations

- 25 Thinning rate

- 10,000 Initial burn-in



Best Fit Model Survey Residuals
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Martucket Lightship CA  GAl
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3 Stocks:

- S. New England/Mid-Atlantic Bight
- Georges Bank
- Cape Cod/Gulf of Maine

Jerry Prezioso, NEFSC/NOAA
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